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Abstract—Object detectors have become the fundamental
building blocks of many real-world machine learning applica-
tions. Even though different problem domains require their own
unique object detector specifications, it is common practice to
take a pretrained object detector off the shelf and either use
it as-is or fine-tune it with limited amounts of labeled training
data. However, the image distribution that such object detectors
are trained on is more often times than not different from the
targeted problem domain of interest. In this work, we scrutinize
whether existing state-of-the-art object detectors have the ability
to generalize across different domains. Specifically, we evaluate
whether widely used pretrained state-of-the-art objectors such as
Faster-RCNN and YOLOv3 generalize to images sampled from
an autonomous vehicle application. For this purpose, we evaluate
the performance of detectors on localizing humans and vehicles
on images from the KITTI dataset and report results of detailed
subgroup analysis on multiple factors. Our analysis shows that
the detectors exhibit different levels of performance on varying
levels of object-object occlusion and object size. Moreover, we
report the performance drop of the object detectors with different
image-altering hazardous factors.

Index Terms—(Object Detection, Subgroup analysis, Au-
tonomous Vehicle)

I. INTRODUCTION

The ability to detect objects from images is arguably one
of the most important aspects of many modern day vision
based applications. The growing capability of recent object
detectors [1]–[5] enabled them to be applied to a diverse set
of problem domains ranging from applications in autonomous
vehicles [6] to medical image analysis [7], only to name a
few. What is common to all such object detectors is the use
of a deep convolutional neural network based general purpose
visual feature extractor backbone [8] combined with modules
for detecting objects which often include a module responsible
for localizing objects, a bounding-box regressor and a classifier
[2].

Such modern state-of-the-art object detectors are very heav-
ily parameterized neural networks which require large amounts
of carefully labeled annotated data for training. Thus, the
advances in curating larger datasets such as [9]–[11] with
accurate object level annotations have fueled the progress
in the field of visual object detection. Most of these large
scale datasets consist of everyday images which cover a large
set of common objects and serve as a general purpose pre-
training datasets for object detectors. However, many realistic
application of object detectors such as autonomous vehicles
focuses on much narrower distribution of images and objects.

For example, in autonomous vehicle applications, vehicles
and humans are observed from a particular point of view, all
objects are viewed in an outdoor setting and actor positions
and orientations adhere to a specific distribution which may
be different to those of objects found in a common household.
However, in practice we often assume that the performance of
these object detectors readily transfers to our target applica-
tions. Therefore, many times the detectors are used as-is or
fine-tuned using small amounts of available training data.

In this work, we wish to scrutinize this assumption by
performing an in-depth subgroup analysis of the performance
of commonly used pretrained object detectors such as Faster-
RCNN and YOLOv3. We take the networks pretrained on
MS COCO and test them on images from KITTI to test
the detectors’ ability to generalize to images drawn from
a different distribution. More specifically, we are interested
in identifying in detail the strengths and weaknesses of the
model with respect to different subgroups. We choose object
occlusion level and object size as the main subgroups that
we perform analysis on. We identify vehicles and humans
to be the most important object types for many applications
and perform subgroups analysis separately for the two object
classes. Our analysis shows that our common assumption that
object detectors transfer well across datasets is not always true.
We find that the object detectors perform better for certain
subgroups than others and the results provide helpful insights
into potential directions to improve existing models as well as
datasets.

II. RELATED WORK

Object detections: In the object detection literature, there
are two mainstream philosophies in designing object detectors.
The first is a region proposal based architectures where the
model first generates region proposals and later classifies them.
The most notable architecture that follows this pipeline is the
Faster-RCNN [2] and the Mask-RCNN [12]. The second type
includes object detectors that pose the detection problem as
a regression or classification problem by jointly predicting
categories and locations directly. For this case, YOLO [3] is
a well known architecture with very efficient implementations
available. We refer to [13] for a thorough survey on the field
of object detection. In this work, we perform our subgroup
analysis on the two representative object detectors, Faster-
RCNN and YOLOv3.



Faster R-CNN [2] adopts a new region proposal approach,
using a Region Proposal Network that share convolution
features with the Fast R-CNN detector, rather than using the
traditional Selective Search algorithm. The approach allows for
the increase in efficiency and accuracy due to the increased
region proposal quality.

YOLOv3 [14] is an one-stage detector based on its pre-
decessor: YOLOv2. It simultaneously predicts the class and
location, making it considerably faster than some other state-
of-the-art methods. YOLOv3 comes with many architectural
changes compared to YOLOv2, such as multilabel classi-
fication instead of softmax and a new feature extraction
network (Darknet-53), which is slower than the previously
used Darknet-19, but much more accurate.

Measuring the performance of object detectors: The field
of object detection has converged towards an universal metric
to measure object detector performance, namely the mean
Average-Precision (mAP). One computes mAP by measuring
the area under the precision-recall curve for detections over
multiple intersection-over-union (IoU) thresholds with which
is then averaged over all classes to produce a single evaluation
criteria [15]. While mAP provides a great overview of the
general performance of a detector on a particular dataset, it
hinders analysis of detection errors at a granular level. For
example, a practitioner cannot intuitively isolate certain error
types and cannot identify different factors that contribute to
detection errors. In this work, we isolate different subgroups
within the dataset, observe how the performance of a detector
is affected by different image perturbations for each subgroup
and thus provide much granular analysis of strengths and
weaknesses of object detectors.

Analyzing strengths and weaknesses of object detectors:
There has been many attempts to diagnose the errors of deep
learning based object detectors in recent years. The seminal
work of [16] provided tools necessary to perform a more in-
depth analysis of false positive detections of the detector. Tools
such as the COCO evaluation toolkit1 extends the analysis
of [16] by analyzing errors with respect to their effects on
model’s precision-recall characteristics. There also exists a
recent work [17] that improves usability and interpretability
while decreasing dataset dependency of the error analysis.
However, all analyses mentioned above assume that the object
detector is trained adequately on the target dataset using a ad-
equately large set of annotated training images from the same
dataset. However, there lacks detailed error analysis on widely
used pretrained object detectors in their off-the-shelf form. In
this work, we expose detailed performance characteristics of
popular pretrained object detectors and compare how various
image perturbations effect detector performance. We also
provide granular analysis of object detector performance per
different object subgroups such as object sizes and occlusion
levels.

Image datasets: The pretrained object detectors used in the
experiment were both trained on MS COCO [9]. It contains

1http://cocodataset.org/#detection-eval

a total of 2.5 million labeled instances over 328 thousand
images covering 91 object types in their natural context. All
images in MS COCO were collected from Flickr, a website
hosting videos and photos shot by photographers, meaning
most images in MS COCO are taken from a typical human
eye perspective.

On the other hand, we are testing the object detectors on
KITTI. KITTI is a dataset focused on providing annotated
images for training and evaluating models in mobile robotics
and autonomous driving applications [18]. Its 2D object de-
tection benchmark contains 80,256 labeled instances across
14999 images in total. Unlike MS COCO, all images in
KITTI were collected by high-resolution cameras mounted on
a vehicle while driving around a mid-sized city. This implies
that there will be fundamental differences between the context
and perspective of the images between MS COCO and KITTI.

III. GRANULAR ANALYSIS OF PRETRAINED OBJECT
DETECTORS

Existing methods assess object detector performance using
mAP which provides an overall summary of detector perfor-
mance for all defined object classes averaged over multiple
operating points. Instead, we wish to provide a more granular
analysis of detector performance by measuring the effect of
isolated factors. Thus, we fix the operating point of detectors
at intersection-over-union (IoU) threshold of 0.5 but measure
the performance of the detector across various subgroups.
In this section, we define the subgroups and various image
perturbations that we perform to measure how robust or fragile
the pretrained object detectors are for each category.

A. Area Under the Curve as the Performance Metric

Area Under the Curve (AUC) is a commonly used perfor-
mance metric for classification problems. We plot Receiver
Operating Characteristic (ROC) curves showing precision-
recall trade-offs for each subgroup and type of image per-
turbation. The precision and recall values of each image is
calculated independently. The average precision and recall
among images contained in a subgroup is used to plot its
precision-recall curve. We then report AUC as the summary
of the detector performance.

B. Defined Subgroups

To allow us to examine the performance of the pretrained
object detectors in detail, we divided the dataset into many
subgroups. On a more general level, all the objects in the
dataset are divided into two subgroups: cars and humans.
These two subgroups are arguably the most crucial prediction
targets in autonomous vehicle applications. Those that aren’t
in either of the subgroups are excluded from the experiment.
Among cars and humans, each object is further categorized
into different subgroups according to their occlusion level and
relative object size within cars/humans. The KITTI dataset
provides each ground truth with four possible occlusion labels:
visible, semi-occluded, fully occluded, and truncated, with



(a) Brightness: 2 (b) Brightness: 4 (c) Brightness: 6

Fig. 1: Effect of Brightness Transformations on the Image

(a) Saturation: 2 (b) Saturation: 4 (c) Saturation: 6

Fig. 2: Effect of Saturation Transformations on the Image

(a) Contrast: 2 (b) Contrast: 4 (c) Contrast: 6

Fig. 3: Effect of Contrast Transformations on the Image

(a) Hue: 0.15 (b) Hue: 0.30 (c) Hue: 0.45

Fig. 4: Effect of Hue Jitters on the Image

each label assigned an occlusion level between 0 to 3, respec-
tively. The occlusion level of an object in an image is defined
by the average occlusion level of all ground truths in a given
image, rounded down. Objects in a given image are labeled
as either visible, semi-occluded, or fully occluded according
to their average occlusion levels. No image contained only
truncated objects, hence no objects were labeled as truncated.
Objects in an image is labeled as being large if the average
object size is in the top 50% among the all objects in that
particular subgroup. Conversely, objects in an image with an
average object size in the lower 50% are classified as being
small.

C. Performed Image perturbations

We selected a range of different image perturbations to
discover how robust pretrained object detectors are when
the image quality isn’t ideal. More specifically, the image
perturbations we employed includes Gaussian blur, brightness
scaling, contrast scaling, saturation scaling, and hue jitter.

Although color jitter is a common technique in data augmen-
tation, the result it produces would be too inconsistent for
analysis, therefore all but hue transformation were done by
applying a fixed scaling factor. Three scaling factor values
are used for this experiment, ranging from 2, 4, and 6. Hue
transformation was done using hue jitter because setting the
entire dataset to a certain hue is unquantifiable. The hue jitter
value is chosen uniformly from a range of [−n, n], where n is
the jitter factor. Since a value of -0.5/0.5 is enough to transform
the hue to the opposite side of the color wheel, 0.5 is regarded
as the maximum value for the jitter factor. Hence, in this
experiment, the values of jitter factor was chosen to be 0.15,
0.30, and 0.45. Lastly, Gaussian blur takes in two parameters:
sigma and the corresponding kernel size. The sigma values
used were chosen to be 1, 2, and 3, and the kernel size that
matches each sigma value ranges from 5, 9, 13, respectively.



(a) Gaussian Blur: σ = 1 (b) Gaussian Blur: σ = 2 (c) Gaussian Blur: σ = 3

Fig. 5: Effect of Gaussian Blur on the Image

Vehicles

Occlusion Level Gaussian Blur Brightness Contrast Saturation Hue
σ = 1 σ = 2 σ = 3 2 4 6 2 4 6 2 4 6 0.15 0.30 0.45

visible 0.686 0.527 0.303 0.675 0.616 0.537 0.562 0.510 0.469 0.697 0.674 0.649 0.696 0.704 0.710
semi-occluded 0.530 0.422 0.273 0.538 0.498 0.450 0.450 0.414 0.382 0.557 0.536 0.521 0.544 0.550 0.557
fully occluded 0.176 0.128 0.077 0.205 0.209 0.212 0.127 0.122 0.094 0.192 0.191 0.172 0.188 0.185 0.195
Object Size
small 0.604 0.416 0.188 0.598 0.535 0.460 0.474 0.419 0.383 0.622 0.596 0.566 0.621 0.627 0.647
large 0.753 0.690 0.557 0.735 0.699 0.624 0.659 0.632 0.601 0.751 0.735 0.725 0.736 0.744 0.744

TABLE I: Overview of Faster R-CNN Performance on Vehicle Subgroup

Humans

Occlusion Level Gaussian Blur Brightness Contrast Saturation Hue
σ = 1 σ = 2 σ = 3 2 4 6 2 4 6 2 4 6 0.15 0.30 0.45

visible 0.312 0.242 0.156 0.325 0.235 0.138 0.258 0.201 0.171 0.349 0.338 0.322 0.338 0.338 0.338
semi-occluded 0.099 0.072 0.040 0.100 0.087 0.056 0.074 0.058 0.052 0.105 0.101 0.099 0.107 0.112 0.110
fully occluded 0.047 0.033 0.022 0.035 0.020 0.008 0.027 0.022 0.019 0.046 0.044 0.039 0.044 0.045 0.041
Object Size
small 0.156 0.094 0.042 0.171 0.128 0.072 0.119 0.093 0.076 0.178 0.170 0.162 0.170 0.173 0.172
large 0.547 0.486 0.392 0.489 0.335 0.207 0.435 0.349 0.303 0.540 0.525 0.504 0.532 0.532 0.525

TABLE II: Overview of Faster R-CNN Performance on Human Subgroup

Vehicles

Occlusion Level Gaussian Blur Brightness Contrast Saturation Hue
σ = 1 σ = 2 σ = 3 2 4 6 2 4 6 2 4 6 0.15 0.30 0.45

visible 0.507 0.320 0.147 0.566 0.521 0.467 0.487 0.425 0.381 0.586 0.566 0.548 0.591 0.605 0.611
semi-occluded 0.430 0.299 0.153 0.474 0.436 0.395 0.395 0.351 0.311 0.473 0.460 0.454 0.481 0.481 0.481
fully occluded 0.186 0.121 0.046 0.229 0.181 0.142 0.140 0.082 0.078 0.218 0.214 0.212 0.223 0.213 0.224
Object Size
small 0.436 0.240 0.082 0.502 0.453 0.403 0.417 0.348 0.311 0.526 0.494 0.478 0.525 0.542 0.554
large 0.606 0.481 0.320 0.620 0.589 0.544 0.560 0.525 0.478 0.635 0.635 0.626 0.641 0.643 0.643

TABLE III: Overview of YOLOv3 Performance on Vehicle Subgroup

IV. RESULTS

In this section, we first report our findings regarding the
performance of pretrained Faster R-CNN on KITTI without
any finetuning. We experiment with how Gaussian blur and
brightness/hue/contract/saturation transformations affect the
model performance with respect to varying occlusion levels
and object sizes. Tables I and II demonstrate that the effect of
image perturbations is similar in both vehicles and humans,
other than the fact that the model performance is generally
lower for detecting humans. We visualize the effect of all
image perturbations in Figures 1, 2, 3, 4 and 5.

We find that Gaussian blur has a large impact on the perfor-
mance of the model. As the kernel size and sigma gets larger,
we observe that there is large drop in the performance. The
drop is also shown to be larger when sigma increases from 2 to
3 when compared to the increase from 1 to 2, suggesting that
the impact of Gaussian blur increases exponentially as the level
of blur increases. This increase is particularly evident in small

objects; the highest level of Gaussian blur caused the largest
difference in performance between large and small objects. On
the other hand, although objects that are completely visible and
semi-occluded seem to be rather robust against Gaussian blur,
objects that are fully occluded seem to suffer a lot more.

In Tables I and II, we also report the performance of
the detector across transformations in brightness, contrast,
saturation and hue. The Faster-RCNN model is generally
robust against these types of color jitter and the performance
is generally higher than that of under Gaussian blur. How-
ever, there are subtle differences between the effect of each
color transformation. Contrast impacted model performance
the most, resulting in the lowest AUC scores among color
transformations across all occlusion levels and object sizes. In
contrast, hue jitter had the least impact on model performance,
resulting in either similar or even higher performance in all
subgroups.

Next, we report our findings regarding the performance of



Humans

Occlusion Level Gaussian Blur Brightness Contrast Saturation Hue
σ = 1 σ = 2 σ = 3 2 4 6 2 4 6 2 4 6 0.15 0.30 0.45

visible 0.224 0.162 0.092 0.242 0.212 0.160 0.177 0.141 0.118 0.238 0.238 0.219 0.237 0.237 0.237
semi-occluded 0.052 0.039 0.016 0.059 0.052 0.040 0.044 0.034 0.026 0.054 0.052 0.052 0.058 0.060 0.065
fully occluded 0.030 0.020 0.008 0.035 0.038 0.031 0.017 0.015 0.013 0.033 0.022 0.022 0.031 0.037 0.027
Object Size
small 0.088 0.053 0.023 0.101 0.092 0.068 0.059 0.044 0.038 0.092 0.084 0.078 0.095 0.095 0.091
large 0.448 0.372 0.245 0.448 0.403 0.298 0.366 0.310 0.264 0.461 0.462 0.448 0.461 0.461 0.468

TABLE IV: Overview of YOLOv3 Performance on Human Subgroup

pretrained YOLOv3 without any finetuning on KITTI in Tables
III and IV. Overall, YOLOv3 shows similar performance
characteristics when compared against Faster R-CNN in many
aspects. However, we observe that the general performance of
YOLOv3 across all subgroups is lower than that of Faster R-
CNN. While both being vulnerable to Gaussian blur, all other
subgroups (including those from Faster R-CNN) only show a
large performance drop from semi-occluded to fully occluded
cases, but YOLOv3 already shows a large performance drop
when going from visible to semi-occluded in the human
subgroup. In the scope of color transformation, the results
show that just like Faster R-CNN, YOLOv3 is also most
vulnerable to contrast while being least affected by hue jitter.

V. CONCLUSION

In this paper, we studied the performance of widely used
pretrained object detectors, Faster-RCNN and YOLOv3. There
are important conclusions that can be made based on our
experimental results. First, both detectors show a performance
drop from detecting cars compared to when detecting humans.
We suspect this is because the humans are inherently smaller
than vehicles and this leaves less margins of error for the
models to draw prediction boxes that meet the IoU threshold.
Secondly, even as some levels of perturbation have been shown
to greatly distort the image, the effect on performance is still
minimal compared to the effect of high occlusion levels and
variations in object sizes. This suggests that we should focus
primarily on guaranteeing the model’s consistency to detect
occluded objects and smaller objects rather than potentially
focusing on solving issues regarding color distortion and low-
resolution images.
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